

Translation of Biomaterial-based Therapies for the Treatment of Spinal Cord Injury: The *Neuro-Spinal Scaffold*[™] and Bioengineered Neural Trails[™]

Alex A. Aimetti, PhD Sr. Director, Medical Education October 25, 2016

Agenda

Spinal cord injury background

- Science of natural progression & modern day standard of care

- Neuro-Spinal Scaffold[™]: Our approach to acute SCI
 - Technology & mechanism of action
 - Translation to the clinic
 - Clinical results to date and future clinical development plans

- Bioengineered Neural Trails: Our approach to chronic SCI
 - Rationale
 - Pre-clinical development and results to date

Spinal Cord Injury: An Unmet Clinical Need

- Unserved patient population
 - 12,500 new cases of acute SCI per year in US¹
 - 276,000 currently live with chronic SCI in US¹

- Only small percentage of patients ever regain function²
- Acute SCI clinical trials using drugs/biologics/cells have all been unsuccessful in showing clinically meaningful improvement
- National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham, February 2015.

Causes of Spinal Cord Injury¹

 Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal cord (2007).

Progression of Acute SCI to Post-Traumatic Cavity in Contusion Injuries

Histology from rat contusion model of SCI

Poster D8-06; National Neurotrauma Society 2015 Symposium; Santa Fe, NM

Standard of Care Following Acute Injury

• Extradural bony decompression and spine stabilization using mechanical hardware

- Rehabilitation is recommended however no specific regimens are proven to improve neurologic recovery (i.e. no SOC rehab)
- Surgical access to the injured spinal cord (intradural/intraparenchymal) is <u>not</u> currently practiced

Neuro-Spinal Scaffold[™] for Acute SCI

Designed to Promote Healing in Spinal Cord Injury

Novel Clinical Approach for Acute SCI: The Neuro-Spinal Scaffold[™]

First Neuro-Spinal Scaffold[™] Implantation in Human Contusion Injury

Neuro-Spinal Scaffold[™] Mechanism of Action

- Promotes the formation of neuro-permissive remodeled tissue that supports neural regeneration
- Provides structural support to surrounding viable tissue
- Serves as a locus for 3-dimensional appositional healing

2D Wound Healing

Neuro-Spinal Scaffold

Internal 3D Wound Healing

- Preserves macroscopic spinal cord architecture and decreases cyst volume
- Increases spared white matter and promotes remyelination of denuded axons

The Neuro-Spinal Scaffold[™] Preserves Macroscopic Spinal Cord Architecture

Rat Acute Spinal Cord Contusion Injury (at 12 weeks)

Control

Neuro-Spinal Scaffold

Poster D8-06; National Neurotrauma Society 2015 Symposium; Santa Fe, NM

InVivo Therapeutics

Neural Sprouting Within Remodeled Tissue Contains Laminin and Sparse Collagen

Control

Scaffold

Sparse collagen

Abundant laminin

Neural sprouting

Masson's Trichrome

Laminin

ß3-Tubulin/Laminin

InVivo Therapeutics

Neural Regeneration and Remyelination with Schwann Cells after Neuro-Spinal Scaffold[™] Implantation

Contusion Injury Central epicenter (a) and white matter (b) Epicenter Schwann Cells aid neural regeneration White Matter Schwann Cells restore signal transduction

Rat Acute Spinal Cord Contusion Injury (at 12 weeks) Inset: Schwann cells ensheathing axons Oligodendrocytes Schwann Cells

InVivo's Chronic SCI Product: Bioengineered Neural Trails™

Neural Stem Cells Incorporated into an Injectable Scaffold for Minimally-Invasive Delivery

Disruption of Motor Control within the Spinal Cord Following Injury

Trails of Transplanted Cells May Provide a Preferred Delivery Approach to Bridge the Injury

Bioengineered Neural Trails[™] Provide Many Advantages Over Conventional Bolus Injections

Bolus approach

- Reflux at multiple injection sites
- Sub-optimal cell distribution
- No longitudinal connectivity

Collagen matrix to simulate spinal cord

Trail approach

- No reflux at single injection site
- Homogeneous cellular suspension
- Immediate longitudinal connectivity

16

Development of a Novel Device to Inject Therapeutic Trails within the Spinal Cord

The TrailMaker[™] Injection Device

Bioengineered Neural Trails[™]: InVivo's Novel Neural Stem Cell Product for Chronic SCI

Porcine Model (1 week after injection)

3D MRI of Bioengineered Neural Trail

Rat Model (1 month after injection)

Histology demonstrating interconnected human cells (STEM121) and neural precursors (rat only) (DCX)

InVivo Therapeutics