High ASIA Impairment Scale Conversion Rate Following Scaffold Implantation in Acute Thoracic Complete AIS A Spinal Cord Injury (SCI): Potential Mechanisms

Nicholas Theodore, MD
Donlin M. Long Professor of Neurosurgery
Director Neurosurgical Spine Center
Johns Hopkins Medicine
Novel Clinical Approach for Acute SCI Treatment: Intraparenchymal Scaffold Implantation

- Designed to act as a physical substrate to promote neural repair
 - Porous, bioresorbable device
 - \textit{In vivo} residence time \(\sim 4-8 \) weeks
- Intraparenchymal implantation within acute cavity following durotomy and often myelotomy
- Investigational device currently being evaluated in INSPIRE clinical trial: \textbf{NCT02138110} – Currently enrolling baseline T2-T12/L1 AIS A injuries <96hrs
The Scaffold Preserves Spinal Cord Architecture in Pre-Clinical Models

Rat Acute Spinal Cord Contusion Injury (at 12 weeks)

Cyst Reduction

Remodeled Tissue

Cavity Volume (mm3)

Control Scaffold

0
2
4
6
*

Remodeled Tissue Volume (mm3)

Control Scaffold

0.0
0.5
1.0
1.5
2.0
*

Laminin

Remodeled Tissue

P<0.05
Neural Regeneration and Remyelination with Schwann Cells after Scaffold Implantation

Contusion Injury
Central epicenter (a) and white matter (b)

Epicenter
Inset: Schwann cells ensheathing axons

White Matter

Rat Acute Spinal Cord Contusion Injury (at 12 weeks)

Oligodendrocytes Schwann Cells
The INSPIRE Study - Promising Neurologic Outcomes and Favorable Safety Profile

*All Subjects were AIS A at Baseline

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>NLI</th>
<th>Time to Implant (hr)</th>
<th>Neurologic Outcome to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>M</td>
<td>T11</td>
<td>9.2</td>
<td>Converted to AIS C at 1 month</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>F</td>
<td>T7</td>
<td>45.6</td>
<td>Remains AIS A at 12 months</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>M</td>
<td>T4</td>
<td>82.6</td>
<td>Converted to AIS B at 1 month</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>M</td>
<td>T3</td>
<td>52.9</td>
<td>Remains AIS A at 12 months</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>F</td>
<td>T8</td>
<td>69.1</td>
<td>Converted to AIS B at 6 months</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>M</td>
<td>T10</td>
<td>8.8</td>
<td>Converted to AIS B at 2 months</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>M</td>
<td>T4</td>
<td>21.3</td>
<td>Remains AIS A at 3 months</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>M</td>
<td>T3</td>
<td>40.4</td>
<td>Converted to AIS B at 3 months</td>
</tr>
</tbody>
</table>

- 5 of 8 evaluable subjects converted from complete to incomplete injuries within 6 months
- Natural history reports ~14-16% conversion rate in this patient population
Clinical Benefit of Scaffold Implantation: Potential Mechanisms

- Scaffold implantation permits:
 - Intra-dural decompression
 - Evacuation of necro-hemorrhagic tissue
- Scaffold promotes endogenous tissue remodeling:
 - Potential cyst reduction – Follow-up MRI’s being assessed (clinical)
 - Neural regeneration (pre-clinical)
 - Promotion of remyelination by Schwann cells (pre-clinical)
Conclusion and Future Clinical Plans for Scaffold Device

• **Conclusion**
 • The Scaffold device has demonstrated a favorable safety profile to date in the limited subject population
 • Preliminary neurological recovery is promising and warrants further clinical investigation
 • Various clinical mechanisms of action are presented and future advanced studies would be needed to confirm these hypotheses

• **Future Plans**
 • Continue to enroll acute T2-T12/L1 AIS A to reach 20 evaluable subjects (12 more needed)
 • 23 clinical sites throughout the U.S. and Canada are currently open
 • Plan to initiate acute cervical AIS A trial in coming months
Acknowledgements

Domagoj Coric, MD
Kee Kim, MD
Wilson (Zack) Ray, MD
Patrick Hsieh, MD
Maureen Barry, MD
Richard T. Layer, PhD
Simon W. Moore, PhD